
 Dr K R Bond 2000

www.educational-computing.co.uk/OOPSample.doc

Structured Programming versus Object-Oriented Programming

Software engineering is a discipline that is concerned with the construction of robust and
reliable computer programs. Just as civil engineers will use tried and tested methods for
the construction of buildings, software engineers will use accepted methods for analysing
a problem to be solved, a blueprint or plan for the design of the solution and a
construction method that minimises the risk of error. The discipline has evolved as the
use of computers has spread. In particular, it has tackled issues that have arisen as a result
of some catastrophic failures of software projects involving teams of programmers
writing thousands of lines of program code. Just as civil engineers have learned from
their failures so have software engineers.

A particular method or family of methods that a software engineer might use to solve a
problem is known as a methodology. During the 1970s and into the 80s, the primary
software engineering methodology was structured programming. The structured
programming approach to program design was based on the following method:

 To solve a large problem, break the problem into several pieces and work on each
piece separately;

 to solve each piece, treat it as a new problem that can itself be broken down into
smaller problems;

 repeat the process with each new piece until each can be solved directly, without
further decomposition.

This approach is also called top-down program design.

The following is a simple example of the structured programming approach to problem
solving.

Write a program for a computer to execute to display the average of two numbers entered
through a keyboard connected to the computer. The average is to be displayed on a VDU
that is also connected to this computer.

The top-down solution is arrived at as follows:

Top level: 0. Display average of two numbers entered through keyboard

Next level: 0.1. Get two numbers through keyboard
 0.2. Calculate average of these two numbers
 0.3. Display average on VDU

 Dr K R Bond 2000

The three steps in next level can now be coded in a programming language such as
Pascal.1

1 See appendix at end of this guide for a structure chart solution to this exercise.

 Dr K R Bond 2000

Top-down program design is a useful and often-used approach to problem solving.
However, it has limitations:

 It focuses almost entirely on producing the instructions necessary to solve a problem.
The design of the data structures is an activity that is just as important but is largely
outside of the scope of top-down design.

 It is difficult to reuse work done for other projects. By starting with a particular
problem and subdividing it into convenient pieces, top-down program design tends to
produce a design that is unique to that problem. Adapting a piece of programming
from another project usually involves a lot of effort and time.

 Some problems by their very nature do not fit the model that top-down program
design is based upon. Their solution cannot be expressed easily in a particular
sequence of instructions. When the order in which instructions are to be executed
cannot be determined in advance, easily, a different approach is required.

Top-down design was therefore combined with bottom-up design. In bottom-up design,
the approach is to start “at the bottom”, with problems that have already been solved and
for which a reusable software component might exist. From this position, the software
engineer works upwards towards a solution to the overall problem.

It is important in this approach that the reusable components are as “modular” as
possible.

A module is a component of a larger system that interacts with the rest of the system
in a simple and well-defined manner.

The idea is that a module can be “plugged into” a system. The details of what goes on
inside a module are not important to the system as a whole, only that the module fulfils
its function correctly. For example, a module might contain procedures to print a list of
students, to add a new student, edit a student’s details and to return a list of specified
students. How the module stores the master records of student details is hidden from
applications/systems that use this module. Similarly, the detail of how the various
procedures are coded is also hidden. This is called information hiding. It is one of the
most important principles of software engineering. Applications only require knowledge
of what procedures are available from the module and the data that can be accessed. This
information is published. It is often called the module’s interface or interfaces.

 Dr K R Bond 2000

A common format for a software module is a module containing some data, along with
some subroutines (subprograms/procedures/functions) for manipulating that data. The
data itself is often hidden from view inside the module forcing a program using the
module to manipulate the data indirectly, by calling the subroutines provided by the
module for this purpose. The advantages of this approach are as follows:

 the data is protected, since it can be manipulated only in known, well-defined ways;

 it is easier to write programs to use a module because the details of how the data is
represented and stored need not be known;

 the storage structure of the data and the code for the subroutines in a module may be
altered without affecting programs that make use of the module as long as the
published interfaces and the module’s functionality remain the same.

Modules that could support this kind of information-hiding became common in
programming languages in the early 1980s. The concept has been developed since then
into a central platform of software engineering called object-oriented programming,
often abbreviated as OOP.

The central concept of object-oriented programming is the object, which is a kind of
module containing data and subroutines. An object is a kind of self-sufficient entity that
has an internal state (the data it contains) and that can respond to messages (calls to its
subroutines). A student-records object, for example, has a state consisting of the details of
all registered students. If a message is sent to it telling it to add the details of a new
student, it will respond by modifying its state to reflect the change. If a message is sent
telling it to print itself, it will respond by printing out a list of details of all registered
students.

The OOP approach to software engineering is to begin by

 identifying the objects involved in a problem;

 identifying the messages that those objects should respond to.

The solution that results is a collection of objects, each with its own data and its own set
of responsibilities. The objects interact by sending messages to each other.

There is not much “top-down” in such an approach. People used to the structured
programming approach find OOP hard at first. However, people who have mastered OOP
claim that object-oriented programs tend to be better models of the way the world itself
works. They claim that this produces solutions that are

 easier to write

 easier to understand

 contain fewer errors

 Dr K R Bond 2000

Why is the object-oriented approach considered to be better at modelling the way the
world itself works? Consider the following exchange between two people:

First person: Jack, are you hungry?
Second Person: Yes I am, Jill.

Classifying this exchange in object-oriented terms, there are two messages flying
between two objects. The objects are Jack and Jill. The messages are “are you hungry?”
and “yes I am”. Jack knows how to respond to the message he receives. His set of
responses might be [Yes I am, No I am not]. Jack chooses the appropriate response by
examining his internal state, i.e. the contents of his stomach.

Objects are created knowing how to respond to certain messages. Different objects might
respond to the same message in different ways. If Jack is a robot, the response to the
message “Jack, are you hungry?” might be “that is a silly question, I do not have human
characteristics”. This property of objects – that different objects can respond to the same
message in different ways – is called polymorphism.

Another important concept in object-oriented programming is the concept of a class.
It is quite common for objects to belong to the same family. These are objects that
contain the same type of data and that respond to the same messages in the same way.
Such objects are said to all belong to the same class. In programming terms, a class is
created and then one or more objects are created using that class as a template. For
example, the clock family consists of devices that keep track of the passage of time.
When their internal state changes they update a display consisting of hours, minutes and
possibly seconds. The only message that a member of the clock family might know how
to respond to is one that tells it to reset its internal state to some hour and minute. There
are many clocks in existence – clock objects. They all belong to the clock family or class.

The classification of all clocks into one big family called the clock class is an
oversimplification. We can divide the clock class into two subclasses called analogue
display clocks and digital display clocks. They are related but differ in the way that they
display time.

07 : 35 3

4

5 7
6

12
1

2

8

9

10

11

 Figure 1 Digital and Analogue Clocks

 Dr K R Bond 2000

Both subclasses have inherited the basic behaviour and characteristics of clocks but each
has its own way of displaying time. A subclass of a class is said to inherit the behaviour
and characteristics of that class. The subclass can add to its inheritance and can even
“override” part of that inheritance by defining a different response to some message that
is known to the parent class.

Inheritance is a powerful programming tool. It also supports the reuse of software
components. A class is the ultimate reusable component. It can be reused directly if it fits
exactly into a new program that is being constructed. If it nearly fits, it can still be reused,
by defining a subclass and then making the necessary changes in the subclass to make it
fit exactly.

A good illustration of class hierarchies – class, subclass, sub-subclass, et cetera – is a
simple drawing program that lets its user draw lines, rectangles, polygons and curves in
one thickness of brush on a screen. Each visible object on the screen could be represented
in software by an object in the program. There would be four classes of objects in the
program, one for each type of visible object that can be drawn. All the lines would
belong to one class, all the rectangles to another class, and so on.

What is the relationship between these classes?

All of these classes represent “drawing objects”. They would all know how to respond to
a “draw yourself” message.

What is the relationship between the classes line and rectangle?

Lines and rectangles need only two points to specify them - a line its two end-points and
a rectangle its top-left and its bottom-right corners.

What is the relationship between the classes polygon and curve?

Both classes represent multiple-point objects.

We can now see that there is a hierarchy of classes belonging to the simple drawing
program. Two-Point Object and Multiple-Point Object are subclasses of the class
Drawing Object. The classes Line and Rectangle are subclasses of the subclass Two-
Point Object. The classes Polygon and Curve are subclasses of the subclass Multiple-
Point Object. The class relationships can be shown on an inheritance diagram - see Figure
2 on the next page.

 Dr K R Bond 2000

Drawing Object

Multiple-Point

Object

Two-Point Object

Polygon

Curve

Rectangle

Line

Figure 2 Inheritance Diagram

 Dr K R Bond 2000

Reusability

A main platform of object-oriented programming is code reusability. Rather than starting
from scratch with each new application, a programmer will consult libraries of existing
components to see if any are appropriate as starting points for the design of a new
application.
These components will exist in libraries as class definitions. A programmer will select an
appropriate class definition from a library and then create a subclass for the application.
The subclass will inherit the methods and properties of the library class, add some new
ones of its own and possibly redefine the actions of others.

Reusability is the ability of software elements to serve for the construction of many
different applications.

In visual programming languages such as Delphi, Visual C++ and Visual Basic the
libraries store the class definitions for components which allow Graphical User Interfaces
(GUI) to be built. The class inheritance diagram shown below illustrates just one such
library.

The popularity of OOP stems from the support it gives to a software development process
that relies upon pre-existing reusable software components.

Component

Container

Text Component

Window

Panel

Text Area

Text Field

Figure 3 Component Inheritance Diagram

Button

 Dr K R Bond 2000

The spirit of reusability requires that amongst programmers a culture prevails in which
software is developed under the assumption that it will be reused.

 Dr K R Bond 2000

Benefits of Reusability

� Reliability. Components built by specialists in their field are more likely to be
designed correctly and reliably. The reuse of these components across many
applications will have given the developers of the components ample feedback to
deal with any bugs and deficiencies.

� Efficiency. The component developers are likely to be experts in their field and
will have used the best possible algorithms and data structures.

� Time Savings. By relying upon existing components there is less software to
develop and hence applications can be built quicker.

� Decreased maintenance effort. Using someone else’s components decreases the
amount of maintenance effort that the application developer needs to expend. The
maintenance of the reused components is the responsibility of the component
supplier.

� Consistency. Reliance on a library of standard components will tend to spread a
consistency of design message throughout a team of programmers working on an
application. The library is the basis of a standard that will lend coherency and
conformity to the design process.

� Investment. Reusing software will save the cost of developing similar software
from scratch. The investment in the original development is preserved if the
developed software can be used in another project. The most reusable software
tends to be that produced by the best developers. Reusing software is thus a way
of preserving the knowledge and creations of the best developers.

 Dr K R Bond 2000

Three main properties characterize an object-oriented programming language:

 Encapsulation

– Combining a record with the procedures and functions that manipulate it to
form a new data type-an object.

 Inheritance

– Defining an object and then using it to build a hierarchy of descendant
objects, with each descendant inheriting access to all its ancestors’ code and
data

 Polymorphism

– Giving an action one name that is shared up and down an object hierarchy,
with each object in the hierarchy implementing the action in a way
appropriate to itself.

