
Chapter 15. Event-Driven

Programming

1

Event Programming

� Event programming
� the flow of the program is determined by user actions
(mouse clicks, key presses) or messages from other
programs.

� Components
� Events: user actions or other events
� Event sources: graphical user interface (GUI) components or
other sources that generate the events

� Event listener (handler): reactions on events

� Basic steps
� Define event handler
� Register event handler with event sources

3

Taste of Event-Driven Programming

� The example displays two buttons in the frame. A
message is displayed on the console when a button is
clicked.

� HandleEvent.java

4

Events

� An event can be defined as a type of signal
to the program that something has
happened.

� The event is generated by external user
actions such as mouse movements, mouse
clicks, and keystrokes, or by the operating
system or program activities, such as a
timer.

5

Event Classes

AWTEvent EventObject

AdjustmentEvent

ComponentEvent

TextEvent

ItemEvent

ActionEvent

InputEvent

WindowEvent

MouseEvent

KeyEvent

ContainerEvent

FocusEvent

PaintEvent

ListSelectionEvent

6

Selected User Actions

Source Event Type

User Action Object Generated

Click a button JButton ActionEvent

Click a check box JCheckBox ItemEvent, ActionEvent

Click a radio button JRadioButton ItemEvent, ActionEvent

Press return on a text field JTextField ActionEvent

Select a new item JComboBox ItemEvent, ActionEvent

Window opened, closed, etc. Window WindowEvent

Mouse pressed, released, etc. Component MouseEvent

Key released, pressed, etc. Component KeyEvent

7

The Delegation Model

source: SourceClass

 +addXListener(listener: XListener)

listener: ListenerClass

User

Action

Trigger an event

XListener

 +handler(event: XEvent)

Register by invoking

source.addXListener(listener);
(a) A generic source component

with a generic listener

source: JButton

 +addActionListener(listener: ActionListener)

listener: CustomListenerClass

ActionListener

 +actionPerformed(event: ActionEvent)

Register by invoking

source.addActionListener(listener);
(b) A JButton source component

with an ActionListener

8

Internal Function of a Source

Component

source: SourceClass

 +addXListener(XListener listener)

(a) Internal function of a generic source object

event: XEvent listener1
listener2

…

listenern

Keep it a list

Invoke

listener1.handler(event)

listener2.handler(event)
…

listenern.handler(event)

An event is

triggered

source: JButton

 +addActionListener(ActionListener listener)

(b) Internal function of a JButton object

event:

ActionEvent

listener1

listener2
…

listenern

Keep it a list

Invoke

listener1.actionPerformed(event)

listener2.actionPerformed(event)
…

listenern.actionPerformed(event)

An event is

triggered

9

Selected Event Handlers

Event Class Listener Interface Listener Methods (Handlers)
ActionEvent ActionListener actionPerformed(ActionEvent)

ItemEvent ItemListener itemStateChanged(ItemEvent)

WindowEvent WindowListener windowClosing(WindowEvent)

windowOpened(WindowEvent)

windowIconified(WindowEvent)

windowDeiconified(WindowEvent)

windowClosed(WindowEvent)

windowActivated(WindowEvent)

windowDeactivated(WindowEvent)

ContainerEvent ContainerListener componentAdded(ContainerEvent)

componentRemoved(ContainerEvent)

MouseEvent MouseListener mousePressed(MouseEvent)

mouseReleased(MouseEvent)

mouseClicked(MouseEvent)

mouseExited(MouseEvent)

mouseEntered(MouseEvent)

KeyEvent KeyListener keyPressed(KeyEvent)

keyReleased(KeyEvent)

keyTypeed(KeyEvent)

10

Back to the First Example:

HandleEvent.java

...

// create event source, event listener, and register listener to

the source

JButton jbt = new JButton("OK");

ActionListener listener = new OKListener();

jbt.addActionListener(listener);

...

// define the listener class

class OKListenerClass implements ActionListener {

public void actionPerformed(ActionEvent e) {

System.out.println("OK button clicked");

}

}

11

Example: Simple event demo

� A simple event demo program with an OK button

� SimpleEventDemo.java

Review questions

� Which of the following statements are true?

A. Each event class has a corresponding listener interface.

B. The listener object's class must implement the corresponding
event-listener interface.

C. A source may have multiple listeners.

D. The listener object must be registered by the source object.

13

Listener class as Inner Classes

� A listener class is designed specifically to create a
listener object for a GUI component (e.g., a button).

� It is appropriate to define the listener class inside
the frame class as an inner class.

14

Inner Classes

� An inner class, or nested class, is a class defined
within the scope of another class

� Defined inside a class but outside its methods

� Defined inside a method

� Inner classes can make programs simple and concise.

� Compiler turns an inner class into a regular class file
OuterClassName$InnerClassName.class.

� An inner class can reference the data and methods
defined in the outer class in which it nests

15

Inner Classes Example

 public class Test {

 ...

}

public class A {

 ...

}

public class Test {

 ...

 // Inner class

 public class A {

 ...

 }

}

(a)

(b)

// OuterClass.java: inner class demo

public class OuterClass {

 private int data;

 /** A method in the outer class */

 public void m() {

 // Do something

 }

 // An inner class
 class InnerClass {

 /** A method in the inner class */

 public void mi() {

 // Directly reference data and method

 // defined in its outer class

 data++;

 m();

 }

 }

}

(c)

16

Example: Defining Listener Class as
an Inner Class

� A simple event demo program with an OK button

� SimpleEventDemo.java

� The event demo program using inner class

� SimpleEventDemoInnerClass.java

17

Anonymous Inner Classes

� Inner class listeners can be shortened using
anonymous inner classes.

� An anonymous inner class is an inner class without a
name.

� It combines declaring an inner class and creating an
instance of the class in one step.

new SuperClassName/InterfaceName() {

// Implement or override methods in superclass or interface

// Other methods if necessary

}

18

Anonymous Inner Classes

� An anonymous inner class must always extend a superclass or
implement an interface

� An anonymous inner class must implement all the abstract
methods in the superclass or in the interface.

� An anonymous inner class always uses the no-arg constructor
from its superclass to create an instance.
� If an anonymous inner class implements an interface, the constructor
is Object().

� An anonymous inner class is compiled into a class named
OuterClassName$n.class
� For example, if the outer class Test has two anonymous inner classes,
these two classes are compiled into Test$1.class and Test$2.class.

19

Example: Defining Listener Class as
an Anonymous Inner Class

� A simple event demo program with an OK button

� SimpleEventDemo.java

� The same event demo program using inner class

� SimpleEventDemoInnerClass.java

� The event demo program using anonymous inner
class

� SimpleEventDemoAnonymousInnerClass.java

20

The Timer Class

� Some non-GUI components can fire events. The Timer class is a

source component that fires an ActionEvent at a predefined rate.

�The Timer class can be used to control animations.

javax.swing.Timer

+Timer(delay: int, listener:

ActionListener)

+addActionListener(listener:

ActionListener): void

+start(): void

+stop(): void

+setDelay(delay: int): void

Creates a Timer with a specified delay in milliseconds and an

ActionListener.

Adds an ActionListener to the timer.

Starts this timer.

Stops this timer.

Sets a new delay value for this timer.

How to Use Timer Class?

� Define an listener class that implements the ActionListener

� Add listener to timer and start the timer

MyListener listener = new MyListener();

Timer t = new Timer(interval, listener);

t.start();

class MyListener implements ActionListener {

void actionPerformed(ActionEvent event) {

// This action will be executed at each timer event

}

}

Example: Timer Class

� Count down example – count down every second

� TimerTester.java

� Shape mover example – move a box to a different
position every second

� TimerTester2.java

22

Review question

� Which of the following statements are true?

A. You can use the addActionListener method in the Timer class
to add a listener.

B. You can specify a delay in the Timer constructor.

C. You must always specify a listener when creating a Timer
object.

D. When a timer is created, it is automatically started.

Game of Life (for extra credit or just for fun!)

� A mathematical game invented by mathematician John Conway
in 1970

� Game rules
� A dead cell with exactly three live neighbors becomes a live cell (birth).

� A live cell with two or three live neighbors stays alive (survival).

� In all other cases, a cell dies or remains dead (overcrowding or loneliness).

� Resources and demos
� http://www.math.com/students/wonders/life/life.html

� http://www.ibiblio.org/lifepatterns/

� Implementation
� Use timer class for animation

� Use two dimensional arrays for cell updates

� Use Graphics for fancy graphical implementation

� Enjoy life!

